Rng2p, a protein required for cytokinesis in fission yeast, is a component of the actomyosin ring and the spindle pole body

نویسندگان

  • Karen Eng
  • Naweed I Naqvi
  • Kelvin C.Y Wong
  • Mohan K Balasubramanian
چکیده

BACKGROUND An actomyosin-based contractile ring plays a pivotal role in cytokinesis. Despite the identification of many components of the ring, the steps involved in its assembly are unknown. The fission yeast Schizosaccharomyces pombe is an attractive organism in which to study cytokinesis because its cell cycle has been well characterized; it divides by medial fission using an actomyosin ring; and a number of S. pombe mutants defective in actomyosin ring assembly have been isolated. Here, we have characterized one such mutant, rng2. RESULTS Temperature-sensitive rng2 mutants accumulated F-actin cables in the medial region of the cell but failed to organize the cables into a ring. In rng2-null mutants, only a spot-like structure containing F-actin was detected. The rng2+ gene encodes a protein related to human IQGAP1, a protein that binds actin and calmodulin and is a potential effector for the Rho family of GTPases. Rng2p localized to the actomyosin ring and to the spindle pole body (SPB) of interphase and mitotic cells. Localization of Rng2p to the actomyosin ring but not the SPB required F-actin. Rng2p interacted with calmodulin, a component of the SPB and the actomyosin ring. The rng2 gene showed genetic interactions with three other actomyosin ring assembly mutants, cdc4, cdc12, and rng5. CONCLUSIONS The S. pombe IQGAP-related protein Rng2p is a component of the actomyosin ring and the SPB and is required for actomyosin ring construction following assembly of F-actin at the division site.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

IQGAP-Related Rng2p Organizes Cortical Nodes and Ensures Position of Cell Division in Fission Yeast

Correct positioning of the cell division machinery is crucial for genomic stability and cell fate determination. The fission yeast Schizosaccharomyces pombe, like animal cells, divides using an actomyosin ring and is an attractive model to study eukaryotic cytokinesis. In S. pombe, positioning of the actomyosin ring depends on the anillin-related protein Mid1p. Mid1p arrives first at the medial...

متن کامل

Pxl1p, a paxillin-related protein, stabilizes the actomyosin ring during cytokinesis in fission yeast.

Paxillins are a family of conserved LIM domain-containing proteins that play important roles in the function and integrity of the actin cytoskeleton. Although paxillins have been extensively characterized by cell biological and biochemical approaches, genetic studies are relatively scarce. Here, we identify and characterize a paxillin-related protein Pxl1p in the fission yeast Schizosaccharomyc...

متن کامل

Roles of Pdk1p, a fission yeast protein related to phosphoinositide-dependent protein kinase, in the regulation of mitosis and cytokinesis.

Proteins related to the phosphoinositide-dependent protein kinase family have been identified in the majority of eukaryotes. Although much is known about upstream mechanisms that regulate the PDK1-family of kinases in metazoans, how these kinases regulate cell growth and division remains unclear. Here, we characterize a fission yeast protein related to members of this family, which we have term...

متن کامل

Cytokinetic actomyosin ring formation and septation in fission yeast are dependent on the full recruitment of the polo-like kinase Plo1 to the spindle pole body and a functional spindle assembly checkpoint.

In dividing cells, the assembly and contraction of the cytokinetic actomyosin ring (CAR) is precisely coordinated with spindle formation and chromosome segregation. Despite having a cell wall, the fission yeast Schizosaccharomyces pombe forms a CAR reminiscent of the structure responsible for the cleavage of cells with flexible boundaries. We used the myo2-gc fission yeast strain in which the c...

متن کامل

SIN-Inhibitory Phosphatase Complex Promotes Cdc11p Dephosphorylation and Propagates SIN Asymmetry in Fission Yeast

BACKGROUND Cytokinesis in many eukaryotes involves the function of an actomyosin-based contractile ring. In fission yeast, actomyosin ring maturation and stability require a conserved signaling pathway termed the SIN (septation initiation network). The SIN consists of a GTPase (Spg1p) and three protein kinases, all of which localize to the mitotic spindle pole bodies (SPBs). Two of the SIN kina...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 8  شماره 

صفحات  -

تاریخ انتشار 1998